
COMP 520 - Compilers

Lecture 19 – Register Minimalization and 
Dynamic Runtime Entities
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PA4 Annoucements: IDIV
• Won’t be asked to do a divide operation that results in 

an exception
• Note: it is enough to zero RDX for the autograder
• It is better to implement an instruction called CQO
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PA4: Little Endian
• You can write 8, 4, and 2 bytes in proper little endian 

encoding using:
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Bytes Method

8 x64.writeLong( _b, imm64 );

4 x64.writeInt( _b, imm32 );

2 x64.writeShort( _b, imm16 );

1 _b.write( imm8 );



PA4: Ending your program
• Implement sys_exit( 0 ) like other syscalls
• Reminder: parameters are in registers just like the 

other system calls

• ALSO: sys_write shouldn’t count the null terminator as 
a part of the string (so if outputting one byte, your 
size is 1, not 2 by including the null terminator)
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WA4 & WA5
• WA4: Helps visualize memory layouts in your x64 

compiler. Fairly short, and should help with PA4.

• WA5: Minimizing registers in RISC. Covered Today!
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Course Evaluations
• Please complete your course evaluations sooner 

rather than later.
• Feedback will be helpful.
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Minimizing Register Usage in RISC
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Why RISC?
• Can make simplifying assumptions:

• Cannot operate on memory locations directly

add [80000520+rcx*4], rdx
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Why RISC? (2)
• Can make simplifying assumptions:

• Cannot operate on memory locations directly
• Must spend one instruction to load from a memory 

address into a register
• Must spend one instruction to store memory from a 

register into a memory location

lw $t0, @800000520

sw $t0, @800000520
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Why RISC? (3)
• Can make simplifying assumptions:

• Cannot operate on memory locations directly
• Must spend one instruction to load from a memory 

address into a register
• Must spend one instruction to store memory from a 

register into a memory location
• Meaningful operations are done on registers/immediates

add $t0, $t0, $t1
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Comparison

x64 MIPS (reduced)
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add [80000520+rcx*4], rdx lis  $t0, 8000
addi $t0, 0520       ; t0   := 80000520
sll  $t1, $t1, 2     ; t1   := t1 * 4
add  $t0, $t0, $t1   ; t0   := t0 + t1
lw   $t3, $t0        ; t3   := [t0]
add  $t3, $t3, $t4   ; t3   := t3 + t4
sw   $t3, $t0        ; [t0] := t3



Why RISC? (4)
• RISC generalizes well
• Can apply RISC optimizations first, then apply 

additional optimizations specific to your ISA
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Goal
• Solve: (A – B) + ((C + D) + (E * F))
• Goals:

• Minimize the number of registers needed
• Get the correct result
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Step 1: Create an AST
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(A – B) + ((C + D) + (E * F))



Step 2: Create Tuple Code (1)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10
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(A – B) + ((C + D) + (E * F))



Step 2: Create Tuple Code (2)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10
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(A – B) + ((C + D) + (E * F))



Step 2: Create Tuple Code (3)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10
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(A – B) + ((C + D) + (E * F))



Step 2: Create Tuple Code (4)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10

18
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((C + D) + (E * F))



Step 2: Create Tuple Code (5)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10
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(A – B) + ((C + D) + (E * F))



Can use Data/Expression Liveness

• This example is not as interesting.
• We have already seen data liveness.
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(A – B) + ((C + D) + (E * F))



Let’s look at a more interesting example

Reused variables and expressions.

21
COMP 520: Compilers – S. Ali

(A – B) + ((C + D) + (E * F))

(A – B) + ((A + D) + (A – B))



Step 2: Generate Tuple Code
t1 := A

t2 := B

t3 := t1 - t2

t4 := A

t5 := D

t6 := t4 + t5

t7 := A

t8 := B

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10
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(A – B) + ((A + D) + (A – B))



Repeat 3: Replace Redundant Loads
t1 := A

t2 := B

t3 := t1 - t2

t4 := A

t5 := D

t6 := t4 + t5

t7 := A

t8 := B

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t4 := t1

t5 := D

t6 := t4 + t5

t7 := t1

t8 := t2

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10
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Repeat 3: Replace Aliases
t1 := A

t2 := B

t3 := t1 - t2

t4 := t1

t5 := D

t6 := t4 + t5

t7 := t1

t8 := t2

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t4 := t1

t5 := D

t6 := t1 + t5

t7 := t1

t8 := t2

t9 := t1 – t2

t10 := t6 + t9

t11 := t3 + t10
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Repeat 3: Replace Redundant 
Expressions

t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t1 – t2

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t3

t10 := t6 + t9

t11 := t3 + t10
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Repeat 3: Replace Aliases
t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t3

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t3

t10 := t6 + t3

t11 := t3 + t10
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Step 4: Reorder Numberings
t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t10 := t6 + t3

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t4 := D

t5 := t1 + t4

t6 := t5 + t3

t7 := t3 + t6
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Step 5: Apply Lifetime Analysis
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Prior to these slides…
• Idea of lifetime analysis was to “eyeball it”
• We need something more formal

• We will construct an interference graph
• Give a node for each temporary register
• Edge (u,v) if life range of u overlaps with live range of v
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Step 6: Apply Interference Graph
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𝐺𝐺 = (𝐸𝐸,𝑉𝑉)
∀𝑢𝑢, 𝑣𝑣 ∶ 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 ∷ 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 ∃𝑙𝑙 ∷ alive 𝑙𝑙,𝑢𝑢 ∧ alive 𝑙𝑙, 𝑣𝑣



k-Coloring
• k is the number of registers available
• NP-complete problem for most architectures

• What does this mean for easily minimizing register 
usage?
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k-Coloring - Greedy
• Greedy Heuristic (may fail)

• Pick a node where indegree < k when possible
• Repeatedly remove node and all associated edges and add to an 

ordered list
• When graph is empty, color nodes in reverse order

• If it fails:
• Need to add in a temporary t and insert fetch and store operations 

for t when needed
• Repeat lifetime analysis, interference analysis
• Might still fail, and more repeating needed
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Kempe Algorithm (1879)
• Given G=(V,E)
• Color nodes in V using k colors such that

• ∀ 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 ∷ color 𝑢𝑢 ≠ color(𝑣𝑣)
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Kempe – Simplify Step
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Kempe – Color Step
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Kempe – Rewrite Step
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Process Overview
1. AST -> Tuple Code Generation
2. Tuple Code -> Lifetime Analysis
3. Interference Graph

• If failure, then generate new temporaries (“spill code”), 
and start from step 2 again with load/stores placed

4. Graph -> New Tuple Code with Registers
5. Generate bytecode
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Register Number: Sethi-Ullman Labeling
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Sethi-Ullman Example
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(A – B) + ((A + D) + (A – B))

1 1

2

1 1 1 1

22

3

3



CISC Sethi-Ullman
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1 1

2

1 0

1

Why?



CISC Sethi-Ullman
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1 1

2

1 0

1

While it looks simple enough, difficult to tell if the choice
is optimal or not (Either in the same expression or later, what
if that variable is used when we used a 0-cost memory operand?)



Strahler Number
• The number obtained by

Sethi-Ullman is called the
Strahler Number

• However, recall that
Sethi-Ullman is a linear
-time complexity algorithm.

• If K-coloring is NP-complete,
then what does that say about Sethi-Ullman?
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Why not bother with x64?
• How many registers does it take to evaluate the 

following expression and push it on the stack?

3 + x
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Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3
 push [x]  (a.k.a. push [rbp-8])
 pop rax
 pop rcx
 add rax, rcx
 push rax
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Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3 
 push […] 
 pop rax
 pop rcx
 add rax, rcx
 push rax
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mov rax, 3
mov rcx, […]
add rax, rcx
push rax

Condense consecutive push/pop



Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3 
 push [rbp-8] 
 pop rax
 pop rcx
 add rax, rcx
 push rax
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mov rax, 3
mov rcx, …
add rax, rcx
push rax

Condense consecutive push/pop
Does rcx’s lifetime end here?
mov rax, 3
add rax, [rbp-8]
push rax
Do such operands by memory



Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3 
 push [rbp-8] 
 pop rax
 pop rcx
 add rax, rcx
 push rax
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mov rax, 3
mov rcx, …
add rax, rcx
push rax

Condense consecutive push/pop
Does rcx’s lifetime end here?
mov rax, 3
add rax, [rbp-8]
push rax

Condense Constants
/ Rewrite
push [rbp-8]
add [rsp],3

Create this variable first,
then apply constant operations



It is material you have seen before!
• By learning RISC optimization techniques, you can 

apply these towards CISC.
• Requires just a few modifications to learned techniques!
• (Condensing constants, creating stack temporaries, …)

• Some optimizations however are hardware-specific…
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That’s it for optimization
• If you are interested in the topic, see the agner.org 

documentation on how to optimize architectures like x64
• Some really interesting stuff about how “very specific 

instructions, when side-by-side, can be combined into one 
instruction and reduce latency in x64”

• Example: Instruction Fusion of CMP, TEST, ADD, SUB, AND, 
OR, XOR, INC, DEC paired with a conditional jump is 
actually one instruction from the processor’s perspective.

• Example: XOR rax,rax is actually a zero time instruction
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Using Libraries
An abrupt change of topics. Originally intended to be a different lecture, but we are 
running short on time remaining in the semester.
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For a change of pace: Windows
• Goal: learn what the file headers for windows are
• Goal: learn how to “import” code from another binary

• Why? Well, why reinvent the wheel?
• See PA4: it is very limited in memory allocation and 

output capabilities
• We want things like printf, file IO, etc.
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Portal Executable Format (haha)
• Windows uses an MZ header and a PE header
• The MZ header was used by DOS programs in the 

strict 16-bit era (LE was the 16/32-bit era)
• COM was another header type in the 16-bit era that is 

reserved for “extremely simple executables”
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MZ Header
• Named after Mark Zbikowski
• Still needed by Windows.. for some reason..

• It does one of the most meaningful things to the 
Windows loader: tell you where it ends

53
COMP 520: Compilers – S. Ali



MZ Header
• It does one of the most meaningful things to the 

Windows loader: tell you where it ends
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Name Offset + Size Purpose

Signature 0x00 (2 bytes) Must be ‘MZ’

Header Size 0x08 (2 bytes) Size of this header

PE Header Location 0x3C (4 bytes) An addition to the original 
MZ header. Specifies where 
in the file is the PE header.



Backwards Compatibility

MZ Header

DOS Stub

PE Header
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Largely ignored now.
Helps load old 16-bit binaries.

“This program cannot be run 
on your version of Windows”
(If you try to run it on DOS).

Modern headers for Windows.



Sections, Segments, Linux, Windows
• Linux Reminder: segments are a chunk of memory 

with some properties (RWX, init from file, etc.) while 
sections can subdivide the segments for special 
purposes.
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Segment: Load 0x1000 bytes from file, Readable, Writeable, Executable

text: RX data: RW tls: RW …



Sections, Segments, Linux, Windows
• In windows, segments are referring to segmentation 

in 32-bit mode.
• Thus, when it comes to mapping memory locations, 

everything is defined by sections, and not segments. 

• What do you think? Is it useful to define segments 
AND sections, or Windows approach for just sections?

57
COMP 520: Compilers – S. Ali



PE Header Characteristics
• Only contains critical information

• What machine is it for? i386?
• How many sections are defined?
• Is there an optional header?

• Optional Header?
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PE Optional Header
• Not so optional usually
• Contains entrypoint, size of the code, data, alignment, 

imports and exports
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Finding out where are the imports

MZ Header

DOS Stub

PE Header

PE Optional Header
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Optional Header

Size of Code

Initialized / Uninitialized size

Entrypoint

Image size

Checksum*

Alignment

Data Directories

…



Finding out where are the imports (2)

MZ Header

DOS Stub

PE Header

PE Optional 
Header
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Optional Header

Size of Code

Initialized / Uninitialized size

Entrypoint

Image size

Checksum*

Alignment

Data Directories

…

16 Data Directories

0: Export

1: Import

2: Resource

3: Exception

4: Security

5: Base Relocation

6: Debug

…

9: TLS Directory

…

12: Import Address Table

…



Import Address Table (IAT)
• It looks exactly like an unpatched jump instruction
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
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Import Address Table (IAT)
  On runtime…

• JMP FAR 0     JMP FAR 85200250
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
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PATCH



During Runtime
• “I need to call printf”
• “The first entry in the IAT is printf”

• CALL [IAT+0]
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During Runtime
• “I need to call printf”
• “The first entry in the IAT is printf”

• … Code here …
• CALL [IAT+0]
• … Next Instruction …
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JMP FAR 55200250
JMP FAR 85200250
JMP FAR C5200250

Real Procedure
…
…
…
…
…
ret



How does the OS know where the real 
procedure is?

• This is done through the Import data directory
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16 Data Directories

0: Export

1: Import

2: Resource

3: Exception

…

Import Section

Import Descriptor

Import Descriptor

Import Descriptor

Zeroes

“Image Thunk”

Function Data

Function Data

Function Data

…



Function Data
• Import by ordinal or name
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Import Section

Import Descriptor

“msvcrt.dll” imports here

Import Descriptor

Zeroes

Image Thunk – msvcrt.dll

Function Ordinal Data

Function Name Ptr

Function Name Ptr

…

printf



To bring it all together
• If “msvcrt.printf” is the 20th function import
• Then it corresponds to the 20th entry in the IAT

• Some simplifications are made,
but that is the general idea.
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Imports don’t have to be done in PE
• See MSDN:

• LoadLibrary( “msvcrt.dll” )
• GetProcAddress( hDll, “printf” )
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Side Discussion: What is a packer?
• Many things can be done on runtime. What if you 

compress your executable code?
• Then, specify a decompression algorithm as the 

entrypoint, decompress the data, then jump to it.

• Useful for hiding your code, makes it only analyzable 
at runtime.
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Anti-Tamper Software
• Removes all imports (does them manually)
• Encrypts all of the executable
• Decrypts only parts when needed
• “Phones home” randomly
• Makes various CRC checks
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Reminder: Course Evaluations
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Reminder: Course Evaluations
• If you found some lectures/PA checkpoints particularly 

effective, let us know
• If you found some lectures/PA checkpoints particularly 

difficult, let us know
• If you have something nice to say, or not, it is worth 

saying to improve this course for subsequent students
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Reminder: Course Evaluations
• I’m still learning to teach, but that isn’t an excuse to 

not give course feedback

• All feedback is valuable

• Hope to see you next week and good luck on PA4!
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End

75
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