
COMP 520 - Compilers

Lecture 19 – Register Minimalization and
Dynamic Runtime Entities

1

PA4 Annoucements: IDIV
• Won’t be asked to do a divide operation that results in

an exception
• Note: it is enough to zero RDX for the autograder
• It is better to implement an instruction called CQO

2
COMP 520: Compilers – S. Ali

PA4: Little Endian
• You can write 8, 4, and 2 bytes in proper little endian

encoding using:

3
COMP 520: Compilers – S. Ali

Bytes Method

8 x64.writeLong(_b, imm64);

4 x64.writeInt(_b, imm32);

2 x64.writeShort(_b, imm16);

1 _b.write(imm8);

PA4: Ending your program
• Implement sys_exit(0) like other syscalls
• Reminder: parameters are in registers just like the

other system calls

• ALSO: sys_write shouldn’t count the null terminator as
a part of the string (so if outputting one byte, your
size is 1, not 2 by including the null terminator)

4
COMP 520: Compilers – S. Ali

WA4 & WA5
• WA4: Helps visualize memory layouts in your x64

compiler. Fairly short, and should help with PA4.

• WA5: Minimizing registers in RISC. Covered Today!

5
COMP 520: Compilers – S. Ali

Course Evaluations
• Please complete your course evaluations sooner

rather than later.
• Feedback will be helpful.

6
COMP 520: Compilers – S. Ali

Minimizing Register Usage in RISC

7
COMP 520: Compilers – S. Ali

Why RISC?
• Can make simplifying assumptions:

• Cannot operate on memory locations directly

add [80000520+rcx*4], rdx

8
COMP 520: Compilers – S. Ali

Why RISC? (2)
• Can make simplifying assumptions:

• Cannot operate on memory locations directly
• Must spend one instruction to load from a memory

address into a register
• Must spend one instruction to store memory from a

register into a memory location

lw $t0, @800000520

sw $t0, @800000520

9
COMP 520: Compilers – S. Ali

Why RISC? (3)
• Can make simplifying assumptions:

• Cannot operate on memory locations directly
• Must spend one instruction to load from a memory

address into a register
• Must spend one instruction to store memory from a

register into a memory location
• Meaningful operations are done on registers/immediates

add $t0, $t0, $t1

10
COMP 520: Compilers – S. Ali

Comparison

x64 MIPS (reduced)

11
COMP 520: Compilers – S. Ali

add [80000520+rcx*4], rdx lis $t0, 8000
addi $t0, 0520 ; t0 := 80000520
sll $t1, $t1, 2 ; t1 := t1 * 4
add $t0, $t0, $t1 ; t0 := t0 + t1
lw $t3, $t0 ; t3 := [t0]
add $t3, $t3, $t4 ; t3 := t3 + t4
sw $t3, $t0 ; [t0] := t3

Why RISC? (4)
• RISC generalizes well
• Can apply RISC optimizations first, then apply

additional optimizations specific to your ISA

12
COMP 520: Compilers – S. Ali

Goal
• Solve: (A – B) + ((C + D) + (E * F))
• Goals:

• Minimize the number of registers needed
• Get the correct result

13
COMP 520: Compilers – S. Ali

Step 1: Create an AST

14
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((C + D) + (E * F))

Step 2: Create Tuple Code (1)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10

15
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((C + D) + (E * F))

Step 2: Create Tuple Code (2)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10

16
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((C + D) + (E * F))

Step 2: Create Tuple Code (3)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10

17
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((C + D) + (E * F))

Step 2: Create Tuple Code (4)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10

18
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((C + D) + (E * F))

Step 2: Create Tuple Code (5)
Idea: greedily assign all instructions a register
Assume infinite registers.

t1 := A
t2 := B
t3 := t1 – t2
t4 := C
t5 := D
t6 := t4 + t5
t7 := E
t8 := F
t9 := t7 * t8
t10 := t6 + t9
t11 := t3 + t10

19
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((C + D) + (E * F))

Can use Data/Expression Liveness

• This example is not as interesting.
• We have already seen data liveness.

20
COMP 520: Compilers – S. Ali

(A – B) + ((C + D) + (E * F))

Let’s look at a more interesting example

Reused variables and expressions.

21
COMP 520: Compilers – S. Ali

(A – B) + ((C + D) + (E * F))

(A – B) + ((A + D) + (A – B))

Step 2: Generate Tuple Code
t1 := A

t2 := B

t3 := t1 - t2

t4 := A

t5 := D

t6 := t4 + t5

t7 := A

t8 := B

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10

22
COMP 520: Compilers – J. Prins, S. Ali

(A – B) + ((A + D) + (A – B))

Repeat 3: Replace Redundant Loads
t1 := A

t2 := B

t3 := t1 - t2

t4 := A

t5 := D

t6 := t4 + t5

t7 := A

t8 := B

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t4 := t1

t5 := D

t6 := t4 + t5

t7 := t1

t8 := t2

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10

23
COMP 520: Compilers – J. Prins, S. Ali

Repeat 3: Replace Aliases
t1 := A

t2 := B

t3 := t1 - t2

t4 := t1

t5 := D

t6 := t4 + t5

t7 := t1

t8 := t2

t9 := t7 - t8

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t4 := t1

t5 := D

t6 := t1 + t5

t7 := t1

t8 := t2

t9 := t1 – t2

t10 := t6 + t9

t11 := t3 + t10

24
COMP 520: Compilers – J. Prins, S. Ali

Repeat 3: Replace Redundant
Expressions

t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t1 – t2

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t3

t10 := t6 + t9

t11 := t3 + t10

25
COMP 520: Compilers – J. Prins, S. Ali

Repeat 3: Replace Aliases
t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t3

t10 := t6 + t9

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t9 := t3

t10 := t6 + t3

t11 := t3 + t10

26
COMP 520: Compilers – J. Prins, S. Ali

Step 4: Reorder Numberings
t1 := A

t2 := B

t3 := t1 - t2

t5 := D

t6 := t1 + t5

t10 := t6 + t3

t11 := t3 + t10

t1 := A

t2 := B

t3 := t1 - t2

t4 := D

t5 := t1 + t4

t6 := t5 + t3

t7 := t3 + t6

27
COMP 520: Compilers – J. Prins, S. Ali

Step 5: Apply Lifetime Analysis

28
COMP 520: Compilers – J. Prins

Prior to these slides…
• Idea of lifetime analysis was to “eyeball it”
• We need something more formal

• We will construct an interference graph
• Give a node for each temporary register
• Edge (u,v) if life range of u overlaps with live range of v

29
COMP 520: Compilers – S. Ali

Step 6: Apply Interference Graph

30
COMP 520: Compilers – J. Prins, S. Ali

𝐺𝐺 = (𝐸𝐸,𝑉𝑉)
∀𝑢𝑢, 𝑣𝑣 ∶ 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 ∷ 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 ∃𝑙𝑙 ∷ alive 𝑙𝑙,𝑢𝑢 ∧ alive 𝑙𝑙, 𝑣𝑣

k-Coloring
• k is the number of registers available
• NP-complete problem for most architectures

• What does this mean for easily minimizing register
usage?

31
COMP 520: Compilers – J. Prins, S. Ali

k-Coloring - Greedy
• Greedy Heuristic (may fail)

• Pick a node where indegree < k when possible
• Repeatedly remove node and all associated edges and add to an

ordered list
• When graph is empty, color nodes in reverse order

• If it fails:
• Need to add in a temporary t and insert fetch and store operations

for t when needed
• Repeat lifetime analysis, interference analysis
• Might still fail, and more repeating needed

32
COMP 520: Compilers – J. Prins, S. Ali

Kempe Algorithm (1879)
• Given G=(V,E)
• Color nodes in V using k colors such that

• ∀ 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸 ∷ color 𝑢𝑢 ≠ color(𝑣𝑣)

33
COMP 520: Compilers – J. Prins

Kempe – Simplify Step

34
COMP 520: Compilers – J. Prins

Kempe – Color Step

35
COMP 520: Compilers – J. Prins

Kempe – Rewrite Step

36
COMP 520: Compilers – J. Prins

Process Overview
1. AST -> Tuple Code Generation
2. Tuple Code -> Lifetime Analysis
3. Interference Graph

• If failure, then generate new temporaries (“spill code”),
and start from step 2 again with load/stores placed

4. Graph -> New Tuple Code with Registers
5. Generate bytecode

37
COMP 520: Compilers – S. Ali

Register Number: Sethi-Ullman Labeling

38
COMP 520: Compilers – S. Ali

Sethi-Ullman Example

39
COMP 520: Compilers – S. Ali

(A – B) + ((A + D) + (A – B))

1 1

2

1 1 1 1

22

3

3

CISC Sethi-Ullman

40
COMP 520: Compilers – S. Ali

1 1

2

1 0

1

Why?

CISC Sethi-Ullman

41
COMP 520: Compilers – S. Ali

1 1

2

1 0

1

While it looks simple enough, difficult to tell if the choice
is optimal or not (Either in the same expression or later, what
if that variable is used when we used a 0-cost memory operand?)

Strahler Number
• The number obtained by

Sethi-Ullman is called the
Strahler Number

• However, recall that
Sethi-Ullman is a linear
-time complexity algorithm.

• If K-coloring is NP-complete,
then what does that say about Sethi-Ullman?

42
COMP 520: Compilers – S. Ali

Why not bother with x64?
• How many registers does it take to evaluate the

following expression and push it on the stack?

3 + x

43
COMP 520: Compilers – S. Ali

Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3
 push [x] (a.k.a. push [rbp-8])
 pop rax
 pop rcx
 add rax, rcx
 push rax

44
COMP 520: Compilers – S. Ali

Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3
 push […]
 pop rax
 pop rcx
 add rax, rcx
 push rax

45
COMP 520: Compilers – S. Ali

mov rax, 3
mov rcx, […]
add rax, rcx
push rax

Condense consecutive push/pop

Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3
 push [rbp-8]
 pop rax
 pop rcx
 add rax, rcx
 push rax

46
COMP 520: Compilers – S. Ali

mov rax, 3
mov rcx, …
add rax, rcx
push rax

Condense consecutive push/pop
Does rcx’s lifetime end here?
mov rax, 3
add rax, [rbp-8]
push rax
Do such operands by memory

Final bit of Optimization
• Recall our expression evaluation relied on the stack
• Results in code like this: (3+x)
 push 3
 push [rbp-8]
 pop rax
 pop rcx
 add rax, rcx
 push rax

47
COMP 520: Compilers – S. Ali

mov rax, 3
mov rcx, …
add rax, rcx
push rax

Condense consecutive push/pop
Does rcx’s lifetime end here?
mov rax, 3
add rax, [rbp-8]
push rax

Condense Constants
/ Rewrite
push [rbp-8]
add [rsp],3

Create this variable first,
then apply constant operations

It is material you have seen before!
• By learning RISC optimization techniques, you can

apply these towards CISC.
• Requires just a few modifications to learned techniques!
• (Condensing constants, creating stack temporaries, …)

• Some optimizations however are hardware-specific…

48
COMP 520: Compilers – S. Ali

That’s it for optimization
• If you are interested in the topic, see the agner.org

documentation on how to optimize architectures like x64
• Some really interesting stuff about how “very specific

instructions, when side-by-side, can be combined into one
instruction and reduce latency in x64”

• Example: Instruction Fusion of CMP, TEST, ADD, SUB, AND,
OR, XOR, INC, DEC paired with a conditional jump is
actually one instruction from the processor’s perspective.

• Example: XOR rax,rax is actually a zero time instruction

49
COMP 520: Compilers – S. Ali

Using Libraries
An abrupt change of topics. Originally intended to be a different lecture, but we are
running short on time remaining in the semester.

50
COMP 520: Compilers – S. Ali

For a change of pace: Windows
• Goal: learn what the file headers for windows are
• Goal: learn how to “import” code from another binary

• Why? Well, why reinvent the wheel?
• See PA4: it is very limited in memory allocation and

output capabilities
• We want things like printf, file IO, etc.

51
COMP 520: Compilers – S. Ali

Portal Executable Format (haha)
• Windows uses an MZ header and a PE header
• The MZ header was used by DOS programs in the

strict 16-bit era (LE was the 16/32-bit era)
• COM was another header type in the 16-bit era that is

reserved for “extremely simple executables”

52
COMP 520: Compilers – S. Ali

MZ Header
• Named after Mark Zbikowski
• Still needed by Windows.. for some reason..

• It does one of the most meaningful things to the
Windows loader: tell you where it ends

53
COMP 520: Compilers – S. Ali

MZ Header
• It does one of the most meaningful things to the

Windows loader: tell you where it ends

54
COMP 520: Compilers – S. Ali

Name Offset + Size Purpose

Signature 0x00 (2 bytes) Must be ‘MZ’

Header Size 0x08 (2 bytes) Size of this header

PE Header Location 0x3C (4 bytes) An addition to the original
MZ header. Specifies where
in the file is the PE header.

Backwards Compatibility

MZ Header

DOS Stub

PE Header

55
COMP 520: Compilers – S. Ali

Largely ignored now.
Helps load old 16-bit binaries.

“This program cannot be run
on your version of Windows”
(If you try to run it on DOS).

Modern headers for Windows.

Sections, Segments, Linux, Windows
• Linux Reminder: segments are a chunk of memory

with some properties (RWX, init from file, etc.) while
sections can subdivide the segments for special
purposes.

56
COMP 520: Compilers – S. Ali

Segment: Load 0x1000 bytes from file, Readable, Writeable, Executable

text: RX data: RW tls: RW …

Sections, Segments, Linux, Windows
• In windows, segments are referring to segmentation

in 32-bit mode.
• Thus, when it comes to mapping memory locations,

everything is defined by sections, and not segments.

• What do you think? Is it useful to define segments
AND sections, or Windows approach for just sections?

57
COMP 520: Compilers – S. Ali

PE Header Characteristics
• Only contains critical information

• What machine is it for? i386?
• How many sections are defined?
• Is there an optional header?

• Optional Header?

58
COMP 520: Compilers – S. Ali

PE Optional Header
• Not so optional usually
• Contains entrypoint, size of the code, data, alignment,

imports and exports

59
COMP 520: Compilers – S. Ali

Finding out where are the imports

MZ Header

DOS Stub

PE Header

PE Optional Header

60
COMP 520: Compilers – S. Ali

Optional Header

Size of Code

Initialized / Uninitialized size

Entrypoint

Image size

Checksum*

Alignment

Data Directories

…

Finding out where are the imports (2)

MZ Header

DOS Stub

PE Header

PE Optional
Header

61
COMP 520: Compilers – S. Ali

Optional Header

Size of Code

Initialized / Uninitialized size

Entrypoint

Image size

Checksum*

Alignment

Data Directories

…

16 Data Directories

0: Export

1: Import

2: Resource

3: Exception

4: Security

5: Base Relocation

6: Debug

…

9: TLS Directory

…

12: Import Address Table

…

Import Address Table (IAT)
• It looks exactly like an unpatched jump instruction
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0

62
COMP 520: Compilers – S. Ali

Import Address Table (IAT)
 On runtime…

• JMP FAR 0 JMP FAR 85200250
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0
• JMP FAR 0

63
COMP 520: Compilers – S. Ali

PATCH

During Runtime
• “I need to call printf”
• “The first entry in the IAT is printf”

• CALL [IAT+0]

64
COMP 520: Compilers – S. Ali

During Runtime
• “I need to call printf”
• “The first entry in the IAT is printf”

• … Code here …
• CALL [IAT+0]
• … Next Instruction …

65
COMP 520: Compilers – S. Ali

JMP FAR 55200250
JMP FAR 85200250
JMP FAR C5200250

Real Procedure
…
…
…
…
…
ret

How does the OS know where the real
procedure is?

• This is done through the Import data directory

66
COMP 520: Compilers – S. Ali

16 Data Directories

0: Export

1: Import

2: Resource

3: Exception

…

Import Section

Import Descriptor

Import Descriptor

Import Descriptor

Zeroes

“Image Thunk”

Function Data

Function Data

Function Data

…

Function Data
• Import by ordinal or name

67
COMP 520: Compilers – S. Ali

Import Section

Import Descriptor

“msvcrt.dll” imports here

Import Descriptor

Zeroes

Image Thunk – msvcrt.dll

Function Ordinal Data

Function Name Ptr

Function Name Ptr

…

printf

To bring it all together
• If “msvcrt.printf” is the 20th function import
• Then it corresponds to the 20th entry in the IAT

• Some simplifications are made,
but that is the general idea.

68
COMP 520: Compilers – S. Ali

Imports don’t have to be done in PE
• See MSDN:

• LoadLibrary(“msvcrt.dll”)
• GetProcAddress(hDll, “printf”)

69
COMP 520: Compilers – S. Ali

Side Discussion: What is a packer?
• Many things can be done on runtime. What if you

compress your executable code?
• Then, specify a decompression algorithm as the

entrypoint, decompress the data, then jump to it.

• Useful for hiding your code, makes it only analyzable
at runtime.

70
COMP 520: Compilers – S. Ali

Anti-Tamper Software
• Removes all imports (does them manually)
• Encrypts all of the executable
• Decrypts only parts when needed
• “Phones home” randomly
• Makes various CRC checks

71
COMP 520: Compilers – S. Ali

Reminder: Course Evaluations

72
COMP 520: Compilers – S. Ali

Reminder: Course Evaluations
• If you found some lectures/PA checkpoints particularly

effective, let us know
• If you found some lectures/PA checkpoints particularly

difficult, let us know
• If you have something nice to say, or not, it is worth

saying to improve this course for subsequent students

73
COMP 520: Compilers – S. Ali

Reminder: Course Evaluations
• I’m still learning to teach, but that isn’t an excuse to

not give course feedback

• All feedback is valuable

• Hope to see you next week and good luck on PA4!

74
COMP 520: Compilers – S. Ali

End

75

76
COMP 520: Compilers – S. Ali

77
COMP 520: Compilers – S. Ali

78
COMP 520: Compilers – S. Ali

79
COMP 520: Compilers – S. Ali

	COMP 520 - Compilers
	PA4 Annoucements: IDIV
	PA4: Little Endian
	PA4: Ending your program
	WA4 & WA5
	Course Evaluations
	Minimizing Register Usage in RISC
	Why RISC?
	Why RISC? (2)
	Why RISC? (3)
	Comparison
	Why RISC? (4)
	Goal
	Step 1: Create an AST
	Step 2: Create Tuple Code (1)
	Step 2: Create Tuple Code (2)
	Step 2: Create Tuple Code (3)
	Step 2: Create Tuple Code (4)
	Step 2: Create Tuple Code (5)
	Can use Data/Expression Liveness
	Let’s look at a more interesting example
	Step 2: Generate Tuple Code
	Repeat 3: Replace Redundant Loads
	Repeat 3: Replace Aliases
	Repeat 3: Replace Redundant Expressions
	Repeat 3: Replace Aliases
	Step 4: Reorder Numberings
	Step 5: Apply Lifetime Analysis
	Prior to these slides…
	Step 6: Apply Interference Graph
	k-Coloring
	k-Coloring - Greedy
	Kempe Algorithm (1879)
	Kempe – Simplify Step
	Kempe – Color Step
	Kempe – Rewrite Step
	Process Overview
	Register Number: Sethi-Ullman Labeling
	Sethi-Ullman Example
	CISC Sethi-Ullman
	CISC Sethi-Ullman
	Strahler Number
	Why not bother with x64?
	Final bit of Optimization
	Final bit of Optimization
	Final bit of Optimization
	Final bit of Optimization
	It is material you have seen before!
	That’s it for optimization
	Using Libraries
	For a change of pace: Windows
	Portal Executable Format (haha)
	MZ Header
	MZ Header
	Backwards Compatibility
	Sections, Segments, Linux, Windows
	Sections, Segments, Linux, Windows
	PE Header Characteristics
	PE Optional Header
	Finding out where are the imports
	Finding out where are the imports (2)
	Import Address Table (IAT)
	Import Address Table (IAT)
	During Runtime
	During Runtime
	How does the OS know where the real procedure is?
	Function Data
	To bring it all together
	Imports don’t have to be done in PE
	Side Discussion: What is a packer?
	Anti-Tamper Software
	Reminder: Course Evaluations
	Reminder: Course Evaluations
	Reminder: Course Evaluations
	End
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79

